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Abstract This is the first one of three companion papers focusing on the “proba-
bilistic evolution approach (PEA)” which has been developed for the solution of the
explicit ODE involving problems under certain consistent impositions. The main pur-
pose here is the determination of the expectation value of a given operator in quantum
mechanics by solving only ODEs, not directly using the wave function. To this end
we first define a basis operator set over the Kronecker powers of an appropriately
defined “system operator vector”. We assume that the target operator’s commutator
with the system’s Hamiltonian can be expressed in terms of the above-mentioned basis
operators. This assumption leads us to an infinite set of linear homogeneous ODEs
over the expectation values of the basis operators. Its coefficient matrix is in block
Hessenberg form when the target operator has no singularity, and beyond that, it may
become block triangular when certain conditions over the system’s potential function
are satisfied. The initial conditions are the basic determining agents giving the proba-
bilistic nature to the solutions of the obtained infinite set of ODEs. They may or may
not have fluctuations depending on the nature of the probability density. All these
issues are investigated in a phenomenological and constructive theoretical manner in
this paper. The remaining two papers are devoted to further details of PEA in quantum
mechanics, and, the application of PEA to systems defined by Liouville equation.
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1 Introduction

The “probabilistic evolution approach (PEA)”, which has been proposed and devel-
oped up to a certain level of maturity by Metin Demiralp and partially by his colleagues,
presents a way of obtaining an infinite linear ODE set for any given explicit ODE set
whose right hand side functions, which may be called “descriptive functions”, are
assumed not to depend explicitly on time. This autonomy is not a generality loss since
by defining a new extra unknown identically the same as the time variable brings the
autonomy if it does not exist. In PEA, we consider a Kronecker power basis set whose
elements are the products of the nonnegative integer powers of the terms defining the
deviations of the unknowns from given constant target values (expansion point com-
ponents). Hence, this basis set elements depend on time and this urges us to construct
an ODE for each basis element. We use certain well-known features of the Kronecker
product and the matrix–matrix, and/or, matrix-vector products together with the given
set of explicit ODEs to get a denumerably infinite number of ODEs which are first
order, linear, homogeneous and with an infinite constant coefficient matrix which we
call “evolution matrix” since it is completely responsible for the evolution of an initial
state to another state at a specified time instance. The evolution matrix is in upper block
Hessenberg form unless its descriptive functions vanish at the expansion point which
is in the linear vector space (state space, phase space), then it becomes block triangular.
Of course the block triangularity facilitates the analysis very much especially in the
sense of spectral issues. The vanishing property may or may not exist in the descriptive
functions or it may exist more than once. What we know from the PEA is that the
truncated solutions obtained from the upperleftmost of the infinite equations converge
to the actual solution as long as the initial data points to a location remaining inside the
complex plane disk (or the complex space hypersphere in the case of multivariance)
centered at the expansion point and excluding the nearest zero point of the descriptive
functions. Hence, in the case of single zero one can expect convergence for entire
complex plane (or complex space in the case of multivariance) which excludes the
complex infinity. On the other hand the case where there appears more than one zero
in the descriptive functions expansion point can be chosen as one of these zero points
and each choice produces a different but intersecting finite convergence domains. The
union of these regions defines the total finite region of convergence, outside which
can be brought to the utilization by using certain inverse type functionalities like it is
done in the analytic continuations of the conventional complex analysis.

We intend to deal mostly with entire (or integer in an equivalent naming) functions
for facilitating analysis. This does not in fact restrict the analysis since for all other
type descriptive functions even the ones with the singularities, the considered set of
ODEs can be principally converted to another ODE set with entire descriptive func-
tions by adding new appropriate unknowns in terms of standing ones and therefore
increasing the dimensionality of the exist ing state space. We call this procedure “space
extension” and it moves all the singular functionalities from the ODE structures to the
initial conditions or some other impositions.

The space extension enables the ODE set to gain conicality, that is, having at most
second degree multinomiality in the descriptive functions. The conicality is reflected
to the evolution matrix as the block diagonal structure composed of the main diagonal
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and its nearest upper and lower diagonal neighbors. If the expansion point is chosen so
that the descriptive functions vanish there then all the lower nearest diagonal blocks
of the evolution matrix vanish. This enables us to separate the total infinite set of
equations to infinite number of finite block ODEs each of which is one of the elements
of a first order recursion whose analytic solution can be formally constructed, and, the
truncation approximants can be rather easily constructed.

Now we are sufficiently motivated and encouraged to extend PEA to physically
true probabilistic systems. The quantum systems (probability arises from the differ-
ence in scales of macro and micro systems) described by the Schrödinger equations
and the statistical systems (probability arises from the unmanageably high numbers of
freedom). This paper and its next companion are devoted to the first one of the systems
while the last paper of this trilogy makes a gentle introduction to the PEA application
for the latter case.

If we skip Heisenberg’s Matrix Formalism and follow the Schrödinger’s Wave Equa-
tion Formalism then the determination of the wave function becomes the main focus of
the quantum dynamical problems even though the wave function is not needed directly
to evaluate the observables. The known wave function means that any observable which
can be defined through an appropriate operator’s expectation value can be evaluated
in principle. However, this is not so mandatory as it appears. The wave function can
be bypassed by formulating ordinary differential equations whose unknowns are the
certain expectation values which can be directly considered as temporal entities. In the
cases focusing on the evaluation of the wave function, the time-dependent Schrödinger
equation’s solution becomes the main target. This equation is a linear partial differ-
ential equation having parabolic and elliptic natures in time and spatial coordinates,
respectively. The parabolic temporal behaviour urges us to give the initial wave form
while the ellipticity is accompanied by certain boundary conditions designed in accor-
dance with the physics of the system under consideration (it is not compulsory to give
boundary conditions for ellipticity, the initial value problems like Cauchy problems
can also be designed, but this is not a frequently encountered issue in the world of
quantum physics). The solution of the Schrödinger equation completely depends on
how simple its Hamiltonian structure is. The analytically solvable cases are quite
rare and the numerical solutions may become formidable when the system’s degree
of freedom climbs up to higher numbers. Hence, special methods were developed to
approximate the solution for special group of systems. All these urge us to develop a
method to find the observable values without solving the Schrödinger’s equation.

Our main goal is to write down the expectation value of a given operator expressed
in fundamental system operators like positions and momenta and then to obtain an
ODE via simple temporal differentiation followed by the evaluation of the operator’s
commutator with system’s Hamiltonian. This produces new expectation values over
new operators arising from the commutation of the operator with the system Hamil-
tonian and urges us to construct new ODEs. However, this procedure may result in
infinite number of ODEs unless the given operator and the system Hamiltonian lie in a
finite set of operators, which is closed under the commutation operation with the sys-
tem Hamiltonian. Finite or infinite, the resulting set of ODEs are first order and can be
accompanied by certain initial values of the relevant operators’ expected values. These
initial value impositions do not require the wave function but its initial form which
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is not to be evaluated but to be given. Hence this procedure bypasses the evaluation
of the wave function. Our main task here is the construction of an expectation value
dynamics over certain universal entities which do not depend on the target operator
but depends only on system entities.

2 Quantum expectation dynamical equations

Let us consider the time dependent Schrödinger’s equation given in the following
closed form

i h̄
∂ψ (x, t)

∂t
= ̂Hψ(x, t), ψ(x, 0) = ψ0(x) (1)

where t and x stand for time and spatial coordinates, respectively while the explicit
structure of the Hamiltonian operator is not given even though its dependence on
momenta is limited to the second degree multinomiality. For the derivation of the
equations of motion in expectation values we do not need this explicity in fact. The
expectation or expected value of a given operator ̂O is defined as

〈

̂O
〉

(t) ≡
∫

V

dVψ (x, t)∗ ̂Oψ (x, t) (2)

where V and dV denote the integration domain over spatial variables and infinitesimal
volume element of integration, respectively while the superscript star means complex
conjugation. So expectation value of any given operator can vary only in time. Even
though it is possible to deal with time variant operators we focus on time independent
operators here since they suffice for our present purposes.

The temporal differentiation of both sides of (2) produces a new integral at the right
hand side such that the integrand contains the time derivatives of the wave function and
its complex conjugate. These temporal derivatives can be expressed in images of the
relevant functions under the Hamilton operator. The right hand side integral can also
be considered as an inner product. The Hermiticity of the Hamilton operator enables
us to transfer the action of the Hamiltonian on the wave function’s complex conjugate
to the other part of the integrand. All these urge us to write the following equality

d
〈

̂O
〉

(t)

dt
=

∫

V

dVψ (x, t)∗
{

i

h̄

[

̂H ̂O − ̂O ̂H
]

}

ψ (x, t)

=
〈

i

h̄

[

̂H ̂O − ̂O ̂H
]

〉

(t) (3)

The accompanying initial condition to this ODE can be given as follows

〈

̂O
〉

(0) ≡
∫

V

dVψ0 (x)∗ ̂Oψ0 (x) . (4)
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(3) and (4) become meaningful and practical if the expected value of the commutator
between the system Hamiltonian and the operator ̂O can be expressed in terms of the
expected value of ̂O . Otherwise we need to define a new operator as follows

̂O1 ≡ i

h̄

[

̂H ̂O − ̂O ̂H
]

(5)

and then try to obtain a new ODE over the expected value of this operator. However, this
may produce a new commutator enforcing us to define a new operator ̂O2 and therefore
urging us to construct another ODE. This procedure may never end unless one of the
commutators can be expressed as a linear combination of the operators appearing up to
that point. This issue is related to commutator algebra and therefore Lie Algebra. How-
ever, we do not intend to proceed in this direction here since we do not actually need it.

An important issue here is the autonomy in the Hamiltonian. If the system under
consideration is isolated from its environment then the system’s behaviour is reflected
to the Hamiltonian via certain time invariant entities like kinetic energy operator and
potential function. On the other hand the systems under external influences can be
described only via time dependent Hamiltonian unless the external field has a very spe-
cific nature. Here, in this work, we assume autonomy in the Hamiltonian to facilitate the
analysis. What we obtain here can be extended to nonautonomous cases without having
any serious difficulties. To this end, certain space extension methods can be used.

3 Probabilistic evolution equations (PEEs)

The fundamental entities characterizing a quantum system are basically momentum
and position operators and the system Hamiltonian also depends on these entities.
These entities can be considered as the elements of a Cartesian vector we call “state
vector” or “system vector”. However, we do not intend to emphasize on the discrim-
ination of the state characterizing entities like positions and momenta. We write the
state vector as follows

s ≡ [ ŝ1 . . . ŝn ]T (6)

where n stands for the “system’s dimension”. This is twice the degree of the freedom
for the considered system. The s elements can be called “state operators”. They may
be position or momentum operators in many practical cases. The important issue for
the analysis here is not their specific nature but the nature of the general operator.

The state vector’s Kronecker square (Kronecker product with itself) is explicitly
defined as follows

s⊗2 ≡ s ⊗ s ≡
[

s1sT . . . snsT
]T

(7)

which can be generalized to the following general formula

s⊗m ≡ s ⊗ s⊗(m−1) ≡
[

s1s⊗(m−1)T . . . sns⊗(m−1)T
]T
, m = 1, 2, 3, . . . (8)
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where nm number of elements exist in the mth Kronecker power of the state vector.
Even though this formula is given for positive integer Kronecker powers it can also
be extended to zeroth Kronecker power by following the traditional approaches in the
similar area. We define the zeroth Kronecker power as the universal scalar operator,
just the identity operator (in other words it is a single element vector).

The expectation value of the state vector can be expressed as follows

d 〈s〉 (t)
dt

=
〈

i

h̄

[

̂H ŝ − ŝ̂H
]

〉

(t) (9)

At this point we need to assume some structure for the right hand side of this equation.
By taking the inspirations from the analytic functions and Taylor series we can assume
the following infinite series representation

i

h̄

[

̂H ŝ − ŝ̂H
] ≡

∞
∑

j=0

H j s⊗ j (10)

where H j is a constant matrix of n ×n j type, depending on and therefore characteriz-
ing the system under consideration. The insertion of this assumption to the right hand
side of (9) produces

d 〈s〉 (t)
dt

=
∞
∑

j=0

H j

〈

s⊗ j
〉

(t) (11)

which urges us to evaluate the expectation value of the mth Kronecker power of the
state vector. To this end we can start by writing the following identity

̂Hŝ j ŝk − ŝ j ŝk ̂H ≡ [

̂Hŝ j − ŝ j ̂H
]

ŝk + ŝ j
[

̂Hŝk − ŝk ̂H
]

(12)

which states that the commutation operation is distributed over the binary products
by paying sufficient care to the multiplication order. This is somehow identical to the
Leibniz rule for differentiation over binary products. This distributive identity is not
peculiar only to binary products but it can be extended to any product involving more
than two factors. We can immediately adapt this identity to a binary Kronecker product
and write the following identity

̂Hs ⊗ s − s ⊗ ŝH ≡ [

̂Hs − ŝH
] ⊗ s + s ⊗ [

̂Hs − ŝH
]

(13)

which can be generalized to the Kronecker powers of the state vector as follows

̂Hs⊗ j − s⊗ j
̂H ≡

j−1
∑

k=0

s⊗k ⊗ [

̂Hs − ŝH
] ⊗ s⊗( j−1−k). (14)
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This result can be combined with (10) to obtain

i

h̄

[

̂Hs⊗ j − s⊗ j
̂H
]

≡
∞
∑

�=0

j−1
∑

k=0

s⊗k ⊗ H�s⊗� ⊗ s⊗( j−1−k) (15)

where we can use the following identities if In stands for the n × n identity matrix

s⊗k ≡ I⊗k
n s⊗k

s⊗k ⊗ H�s⊗� ⊗ s⊗( j−1−k) ≡
[

I⊗k
n ⊗ H� ⊗ I⊗( j−1−k)

n

]

s⊗( j−1+�) (16)

the last one of which is derived by using the mutually distributive property of the
matrix products and outer products.

If we define

E j, j+�−1 ≡
j−1
∑

k=0

I⊗k
n ⊗ H� ⊗ I⊗( j−1−k)

n (17)

then we can rewrite (15) as follows

i

h̄

[

̂Hs⊗ j − s⊗ j
̂H
]

≡
∞
∑

�=0

E j,�s⊗� (18)

which allows us to write

d
〈

s⊗ j
〉

(t)

dt
=

∞
∑

�=0

E j,�

〈

s⊗�〉 (t), j = 0, 1, 2, . . . (19)

These denumerably infinite number of the equations can be put in to a more concise
form by defining

ξ(t) ≡
[

〈

s⊗0
〉

(t)
T 〈

s⊗1
〉

(t)
T
. . .

]T

(20)

E ≡

⎡

⎢

⎢

⎢

⎢

⎣

E0,0 · · · E0,m · · ·
...

. . .
...

...

Em,0 · · · Em,m · · ·
...

...
...

. . .

⎤

⎥

⎥

⎥

⎥

⎦

(21)

which urge us to write

dξ(t)

dt
= Eξ(t) (22)
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As can be immediately noticed the constant infinite matrix E’s first row is composed
of only zeroes while the other block rows have dimensions n, n2, n3, and so on. This
block structure is in such a way that all lower diagonal blocks except the ones residing
in the closest neighbour of the main diagonal blocks vanish. This means that E is
in upper block Hessenberg form. This may bring a lot of advantages. However, it is
better to have triangular form for practicality. Triangularity may avail only when H0
which is an n-element vector vanishes. The survival of this property is peculiar to the
system under consideration and to how the state vector is defined. Its definition can
be changed even preserving the dependence on the same operators, by using certain
functional relations like affine transformations.

The constancy of the matrix E, we call “evolution matrix” since it is responsi-
ble for the expectation value system’s general behaviour not depending on the initial
conditions, enables us to write the formal solution of (22) as follows

ξ(t) = etEξ(0) (23)

The second block which is an n element vector gives the expectation values of the
state operator as a function of time. The other blocks are also meaningful. They can be
used to evaluate the mathematical fluctuations in the expectation values. For example,
the third block is the expectation value of the Kronecker square of the state vector
and we can not expect its equality to the Kronecker square of the expectation value
of the state vector unless the initial wave form is sharply localized like Dirac delta
function. In a crude statement, the expectation value of the square of an operator is not
equal to the square of the expectation value of the same operator in the nonexistence
of sharply localized probability distributions. The statement can be extended to higher
Kronecker powers accordingly and each of them can be used to define a different and
separate mathematical fluctuation.

4 Block triangularity and truncation approximants

As we mentioned above the n-element vector H0 is responsible for making the evolu-
tion matrix block triangular. In many cases the state vector is composed of momentum
and position operators and the Hamiltonian is such that this vector vanishes if the
vector of position coordinates, x resides at a minimum of the potential function of
the system because some of its elements like momenta spontaneously vanish while
the others are the partial derivatives of the potential function evaluated at the origin if
xs themselves are taken as some of the s elements. The origin may not be a minimum
of the potential function. Then the definitions of ss may be changed to the powers
of shifted values of the x coordinates to match a minimum of the potential. Thus H0
is made to vanish. However, this is true for the potential functions whose values at
their minima are finite. Otherwise there are certain singularities in the potential and
all the above analysis fails. We do not consider these cases here but leave them to
another paper of our group. So what we can say about block triangularity is that it can
be provided by working with powers of the differences in spatial coordinates from a
specific point in the position space of the system under consideration.
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Once the block triangularity is provided; the next step is to truncate the probabilistic
evolution equations from its left uppermost part as follows

ξnt
(t) ≡

[ 〈

s⊗0
〉

(t)T
〈

s⊗1
〉

(t)T . . .
〈

s⊗nt
〉

(t)T
]T

(24)

Ent ≡
⎡

⎢

⎣

E0,0 · · · E0,nt
...

. . .
...

Ent ,0 · · · Ent ,nt

⎤

⎥

⎦ (25)

where nt is a nonnegative integer defining the level of the truncation. The truncated
evolution matrix Ent is upper block triangular since all its lower triangular blocks
vanish. The probabilistic evolution equation now becomes

dξnt
(t)

dt
= Ent ξnt

(t) (26)

whose solution is given as follows

ξnt
(t) = etEnt ξnt

(0). (27)

The block triangularity of (25) urges us to evaluate the diagonal blocks of the evolution
matrix since their exponential functions gain great importance for the evaluation of
the truncated solution. To this end we can write

E j, j ≡
j−1
∑

k=0

I⊗k
n ⊗ H1 ⊗ I⊗( j−1−k)

n , j = 0, 1, 2, . . . (28)

whose summands are square type matrices which are also mutually commutative as
can be shown by using the standard features of the Kronecker product. Therefore we
can write

etE j, j =
j−1
∏

k=0

e
t
[

I⊗k
n ⊗H1⊗I⊗( j−1−k)

n

]

, j = 0, 1, 2, . . . (29)

where the argument of the exponential factors satisfy the following powering relations

[

I⊗k
n ⊗ H1 ⊗ I⊗( j−1−k)

n

]m = I⊗k
n ⊗ Hm

1 ⊗ I⊗( j−1−k)
n , j = 0, 1, 2, . . . (30)

which permit us to rewrite (29) as follows

etE j, j =
j−1
∏

k=0

I⊗k
n ⊗ etH1 ⊗ I⊗( j−1−k)

n =
[

etH1
]⊗ j

, j = 0, 1, 2, . . . (31)
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where the rightmost equation has been constructed by using the mutual distributive
property of the matrix product and Kronecker product. We define

F(t) ≡ etH1, (32)

where F(t) is apparently n × n type time variant matrix. It characterizes the system’s
evolution since the truncated solutions’ time variance comes purely from this entity.
We call this matrix “fundamental propagator” of the system under consideration. As
seen from above the time variance of the fundamental propagator is completely deter-
mined by H1. This is responsible for the stability of the system, that is, the behavior
of the system when time grows unboundedly. Spectral decompositions of H1s can be
used to get more explicit expressions for the fundamental propagator. Each element
of fundamental propagator is a linear combination of the scalar exponential functions
whose arguments are just time scaled by one of the eigenvalues of the relevant H1
matrix as long as the algebraic and geometric multiplicities in each eigenvalue are
the same (otherwise the exponential functions may need to be multiplied by certain
positive integer powers of t). Hence, the spectrum of H j is solely responsible for the
stability of F j unless the algebraic and geometric multiplicities of eigenvalues differ.
The spectrum is generally composed of pure imaginary numbers, by making the sys-
tem behavior oscillatory. If this does not happen then the scattering phenomena which
somehow corresponds to the singularities in the Hamiltonian is encountered. We do
not intend to go beyond this point here since it exceeds the scope of the paper.

5 Conicality and space extension possibilities

The block triangularity is important because it removes many complications coming
from the upper Hessenberg block form like the possibility of continuous spectrum
appearance for the evolution matrix due to its infinite structure. However, it does
not provide us with the simplest structure in the evolution matrix since full triangular
structure complicates even the construction of truncated approximants. The best struc-
ture in the evolution matrix is of course the case of block diagonality which can not
be obtained unless the system under consideration possesses very particular features.
Beyond the diagonality, the simplest case is two banded structure in the evolution
matrix (conicality in the descriptive functions). The conicality means that the com-
mutator of the system Hamiltonian with the state vector can be expressed as a linear
combination of the state vector and its Kronecker square if the evolution matrix is
triangular, otherwise a constant vector is added. This may not be spontaneously hap-
pening unless certain specific characters exist in the system. This raises the question
“is it possible to consider the system in an extended space which has a dimension
greater than the original one?”. The answer may not be “yes” in all circumstances.
However, we have shown that the definition of new entities depending on the system
variables and regarding them as new independent variables facilitates the construction
of the probabilistic evolution equations to have an evolution matrix having nonvanish-
ing blocks only on its main diagonal and its closest upper neighbor, (that is, in conical
form).
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In quantum mechanics the system characterizing agents are not just scalar enti-
ties but (at least partially, half of the entities) operators because of the existence
of the momentum operators. As a matter of fact the position related entities can
also be considered as the multiplication operators multiplying their operands by the
corresponding spatial coordinates. However, unless the commutativity issues are on
the stage, they can be represented by the corresponding spatial coordinates at the
benefit of scalar utilization. The position dependent entities are generally potential
functions whose structures determine how the space can be extended to get coni-
cality. However, we do not intend to proceed further in this direction since it is
out of the scope of this general theoretical presentation. The curious readers can
refer to related publications of the author and his group, or, contact the author,
himself.

6 Initial conditions and the probabilistic nature

We need now to focus on the initial conditions. To this end we can write

ξ(0) ≡
[

〈

s⊗0
〉

(0)
T 〈

s⊗1
〉

(0)
T
. . .

]T

(33)

where

〈

s⊗m 〉 (0) ≡
∫

V

dVψ0 (x)∗ s⊗mψ0 (x) , m = 0, 1, 2, . . . (34)

which leads to the following inequality

〈

s⊗m 〉 (0) �= 〈s〉 (0)⊗m, m = 0, 1, 2, . . . (35)

unless the probability density (complex modulus square of the initial wave form)
becomes sharply localized at a point in the space spanned by x. This inequality
reflects the mathematical fluctuation in the mth Kronecker power of the state vec-
tor expected value. Therefore, as long as the probability distribution is not condensed
at a single point there are unavoidable fluctuations in the initial values. In the case
of no fluctuation the initial form of the ξ infinite vector becomes a power vector
whose block elements are the nonnegative integer Kronecker powers of its second
block. All these mean that the word “probabilistic” comes from this point and the
probabilistic nature completely comes from the initial vector structure. In the case
of probabilistic evolution for initial value problems of ODEs, the initial vector is a
power vector and the probability density is like Dirac delta function. In the pres-
ent case, the case for quantum mechanics, the probabilistic nature is reflected to the
solutions through initial conditions and is created by the initial form of the wave
function.
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7 Convergence of the probabilistic evolution approach solutions

The expectation value of state vector’s j th Kronecker power can be rewritten as fol-
lows when the evolution matrix is upper block triangular and having two adjacent
diagonals, the main diagonal and its nearest upper neighbor

d
〈

s⊗ j
〉

(t)

dt
= E j, j

〈

s⊗ j
〉

(t)+ E j, j+1

〈

s⊗( j+1)
〉

(t), j = 0, 1, 2, . . . (36)

which can be solved for the expectation value of the j th Kronecker power of the state
vector as follows

〈

s⊗ j
〉

(t)=etE j, j
〈

s⊗ j
〉

(0)+
t

∫

0

dτe(t−τ)E j, j E j, j+1

〈

s⊗( j+1)
〉

(τ ), j =0, 1, 2, . . .

(37)

This is a recursive equation whose solution can be found by an iterative procedure.
First we focus on the very specific case where j is taken 1 to evaluate the state vector’s
expectation value. Then we write

〈

s⊗1
〉

(t) = 〈s〉 (t) = etE1,1 〈s〉 (0)+
t

∫

0

dτe(t−τ)E1,1 E1,2

〈

s⊗2
〉

(τ )

= F(t) 〈s〉 (0)+
t

∫

0

dτF(t − τ)H2

〈

s⊗2
〉

(τ ) (38)

which necessitates the evaluation of the state vector’s Kronecker square expectation
value. We can use (37) and get

〈

s⊗2
〉

(t) = etE2,2
〈

s⊗2
〉

(0)+
t

∫

0

dτe(t−τ)E2,2 E2,3

〈

s⊗3
〉

(τ ) = F(t)⊗2
〈

s⊗2
〉

(0)

+
t

∫

0

dτF(t − τ)⊗2 (H2 ⊗ In + In ⊗ H2)
〈

s⊗3
〉

(τ ) (39)

whose utilization in (38) gives

〈s〉 (t) = F(t) 〈s〉 (0)+
t

∫

0

dτ1F (t − τ1)H2F (τ1)
⊗2

〈

s⊗2
〉

(0)

+
t

∫

0

dτ1

τ1
∫

0

dτ2F (t − τ1)H2F (τ1 − τ2)
⊗2

× (H2 ⊗ In + In ⊗ H2)
〈

s⊗3
〉

(τ2) (40)
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This equation can also be further iterated by evaluating the state vector’s Kroneck-
er cube expectation value to get an expression where the fourth Kronecker power of
the state vector appears as the smallest Kronecker power at the right hand side. This
produces

〈s〉 (t) = F(t) 〈s〉 (0)+
t

∫

0

dτ1F (t − τ1)H2F (τ1)
⊗2

〈

s⊗2
〉

(0)

+
t

∫

0

dτ1

τ1
∫

0

dτ2F (t − τ1)H2F (τ1 − τ2)
⊗2

× (H2 ⊗ In + In ⊗ H2)F (τ2)
⊗3

〈

s⊗3
〉

(0)+ · · · (41)

where three central dots stand for the remaining terms involving fourth and higher
Kronecker powers of the state vector. Since the matrix F depends on its argument
exponentially we can write

F (t − τ1)H2F (τ1)
⊗2 = F(t)F(−τ1)H2F (τ1)

⊗2 (42)

H2(t) ≡ F(−t)H2F (t)⊗2 (43)

which urges us to rewrite (41) as follows

〈s〉 (t) = F(t)

⎧

⎨

⎩

〈s〉 (0)+
t

∫

0

dτ1H2 (τ1)
〈

s⊗2
〉

(0)

+
t

∫

0

dτ1H2 (τ1)

τ1
∫

0

dτ2
[

In ⊗ H2 (τ2)+ H2 (τ2)⊗ In
]

〈

s⊗3
〉

(0) + · · ·
⎫

⎬

⎭

(44)

and therefore to define

I j (t)M(t)≡
t

∫

0

dτ

⎡

⎣

j−1
∑

k=0

I⊗k
n ⊗ H2 (τ )⊗ I⊗( j−1−k)

n

⎤

⎦M (τ ) , j = 1, 2, 3, . . . (45)

where M(t) is a matrix whose row number is compatible for premultiplication with
the matrix kernel of I j . (45)’s utilization in (44) produces the following more explicit
equality where the product of calligraphic Is is assumed to be unity when j becomes
zero

〈s〉 (t) = F(t)

⎧

⎨

⎩

∞
∑

j=1

I1(t) . . . I j−1(t)
〈

s⊗ j
〉

(0)

⎫

⎬

⎭

(46)
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whose finite sum truncation from the first terms of series form the truncation approx-
imants.

Now we can use a submultiplicative matrix norm (the norm of a product is equal to
or less than the product of the norms of the individual factors in this norm) and write
the following inequality from (46)

‖〈s〉 (t)‖ ≤ ‖F(t)‖
⎧

⎨

⎩

∞
∑

j=1

∥

∥I1(t) . . . I j−1(t)
∥

∥

∥

∥

∥

〈

s⊗ j
〉

(0)
∥

∥

∥

⎫

⎬

⎭

(47)

which urges us to evaluate the norms of matrix integrals Is. If the norm under con-
sideration is chosen in such a way that the norm of the unit matrix takes the value of
1 then it is not hard to see that

∥

∥

∥

∥

∥

∥

j−1
∑

k=0

I⊗k
n ⊗ H2 (τ )⊗ I⊗( j−1−k)

n

∥

∥

∥

∥

∥

∥

≤ j
∥

∥H2 (τ )
∥

∥ , j = 1, 2, 3, . . . (48)

which enables us to write

∥

∥I1(t) . . . I j (t)
∥

∥ ≤
⎛

⎝

t
∫

0

dτ
∥

∥H2 (τ )
∥

∥

⎞

⎠

j

, j = 1, 2, 3, . . . (49)

and therefore to rewrite (47) as follows

‖〈s〉 (t)‖ ≤ ‖F(t)‖
∞
∑

j=1

⎛

⎝

t
∫

0

dτ
∥

∥H2 (τ )
∥

∥

⎞

⎠

j−1
∥

∥

∥

〈

s⊗ j
〉

(0)
∥

∥

∥ (50)

Now we are at a point to use fluctuationlessness theorem which dictates us that the
matrix representation of a function operator over a basis set involving a finite number
of basis function is equal to the image of the independent variable matrix representa-
tions under the function of the function operator when all mathematical fluctuations
are ignored. This theorem was first conjectured and proven by Metin Demiralp while
its multivariate counterpart has also been conjectured and proven a little bit later by the
same author. This theorem remains valid for the Kronecker power expectation values
as long as the initial waveform for the expectation value evaluation is appropriately
chosen. In this context, we can state the fluctuationlessness theorem for a Kronecker
power of state vector as follows: the expectation value of a Kronecker power of the
state vector is equal to the same Kronecker power of the state vector’s expectation value
evaluated via an eigenfunction (which are common for all) of the independent variable
matrix representation when all fluctuations are ignored. This can be mathematically
expressed as follows

〈

s⊗ j
〉

k
(0) = 〈s〉k (0)

⊗ j , k = 1, 2, 3, . . . , Nn (51)
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where subindex k denotes the fact that expectation value is evaluated with respect to
the kth eigenfunction of the universal matrices corresponding n dimensional subspace
in the Hilbert space of the multivariate functions which are square integrable. (51)
takes us to the following approximation in norm

∥

∥

∥

〈

s⊗ j
〉

k
(0)

∥

∥

∥ = ∥

∥〈s〉k (0)
∥

∥

⊗ j
, k = 1, 2, 3, . . . , Nn (52)

which urges us to rewrite (50)

‖〈s〉 (t)‖ ≤ ‖F(t)‖
∞
∑

j=1

⎛

⎝

t
∫

0

dτ
∥

∥H2 (τ )
∥

∥

⎞

⎠

j−1

‖〈s〉 (0)‖⊗ j . (53)

This result implies that the following inequality should be satisfied to get convergence
in the truncation approximants

t
∫

0

dτ
∥

∥H2 (τ )
∥

∥ ‖〈s〉 (0)‖ < 1 (54)

which completes our convergence analysis on the truncation approximants.
The above convergence condition depends on two entities: (1) The time integral of

matrix norm for H2(t), which may be considered as a global norm not only on matrix
structure but time variation of the relevant entity, (2) The matrix norm of the initial
expectation value of the state vector. The former one defines the disk in which the
state vector resides. Its value is determined by the expansion point and the commu-
tator of the system’s Hamiltonian operator with the state vector whose elements are
operators. The state vector is defined in accordance with the expansion point of the
Kronecker power expansion. Hence the change of the expansion point causes changes
in H coefficients and therefore in the matrix F(t) and at the end in H2(t). This mean
the change in the location and the radius in the convergence disk. So it seems to be
possible to change convergence domain and cover all possible cases. However, this is
a quite comprehensive issue and we do not intend to focus on it here.

8 Evaluating any given analytic operator’s expected value

We are now ready to evaluate the expectation value of a given operator ̂O(s). We
assume that this operator has the following expression in Kronecker powers of the
state vector

̂O (s) =
∞
∑

j=0

oT
j s⊗ j (55)

where o j is a vector of n j elements. This expression is written by following the inspira-
tion from the analytic functions. Hence, we call any operator, which can be expressed
in this manner, “analytic”. (55) allows us to write the following equation as long as
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the series at its right hand side converges.

〈

̂O (s)
〉

(t) =
∞
∑

j=0

oT
j

〈

s⊗ j
〉

(t) (56)

whose right hand side expected value can be taken from the solution of the probabilistic
evolution equation. If we define

ocoe f ≡
[

oT
0 oT

1 . . .
]T

(57)

then we can rewrite (56) in the following concise form

〈

̂O (s)
〉

(t) = oT
coe f ξ(t). (58)

This is the final form of the expected value for a given analytic operator.

9 Conclusion

In this work we have brought a new perspective to quantum dynamical problems.
The approach does not explicitly use the Schrödinger equation and the wave function
whose initial form is the only required entity. The purpose is to get ODE(s) with initial
conditions and this could be accomplished by using the expectation values which are
the ultimate targets to be evaluated in fact. The use of state vector whose elements are
the operators characterizing the system under consideration, and, its nonnegative out-
erpowers are used as the basis entities and their expectation values served to construct
an infinite set of ODEs with appropriate initial conditions.

Here, the mainlines of the theory and basic concepts are given. The convergence of
the truncation approximants have also been investigated. A rather simple inequality
has been found to define the convergence domain for the state vector’s initial expec-
tation norm. Practical applications will be the topic of our future works. We list a
few important publications of the author and his group in the references together with
certain rather recent important resources on ODEs for further reading since they are
the only basic references at this moment. The references [1–4] are about the PEA
while [5–9] are related to mathematical fluctuations whereas [10–14] are for certain
important resources published rather recently.
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